Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Immunol Med ; 45(3): 162-167, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1868228

ABSTRACT

B-cell but not T-cell responses have been extensively studied using peripheral blood mononuclear cells (PBMCs) obtained from patients with coronavirus disease 2019 (COVID-19). Our recent study showed that not only T-helper (Th) 17 but also Th1 cells directly produce interleukin (IL)-8, a major source of neutrophilic inflammation, which is also known to induce disseminated intravascular coagulation (DIC) in COVID-19 patients. Neutrophilic inflammation caused by IL-17A or IL-8 can be fatal; thus, therapeutic intervention is highly expected. The present study aimed to investigate the T-cell responses in the Japanese patients. We synthesized spike protein-derived 15-mer peptides that are expected to bind to HLA class II allelic products frequently observed in the Japanese population, and checked the T-cell responses in Japanese patients with COVID-19. We have found that (i) patients show marked IL-8 but not IL-17A responses; (ii) these responses are restricted by HLA-DR; and (iii) IL-8 responses are abrogated by a dopamine D2 like receptor (D2R) agonist, ropinirole, and an adenosine A2a receptor (A2aR) antagonist, istradefylline. Compounds used for the treatment of Parkinson's disease may ease DIC in COVID-19. (183 words).


Subject(s)
COVID-19 Drug Treatment , Dopamine , T-Lymphocytes , Dacarbazine , Dopamine Agonists/pharmacology , Humans , Inflammation , Interleukin-8 , Leukocytes, Mononuclear/metabolism , Purinergic P1 Receptor Antagonists , Receptor, Adenosine A2A/metabolism , T-Lymphocytes/immunology
2.
Mol Med Rep ; 24(4)2021 Oct.
Article in English | MEDLINE | ID: covidwho-1395036

ABSTRACT

Chronic alcohol abuse increases the risk of mortality and poor outcomes in patients with acute respiratory distress syndrome. However, the underlying mechanisms remain to be elucidated. The present study aimed to investigate the effects of chronic alcohol consumption on lung injury and clarify the signaling pathways involved in the inhibition of alveolar fluid clearance (AFC). In order to produce rodent models with chronic alcohol consumption, wild­type C57BL/6 mice were treated with alcohol. A2a adenosine receptor (AR) small interfering (si)RNA or A2bAR siRNA were transfected into the lung tissue of mice and primary rat alveolar type II (ATII) cells. The rate of AFC in lung tissue was measured during exposure to lipopolysaccharide (LPS). Epithelial sodium channel (ENaC) expression was determined to investigate the mechanisms underlying alcohol­induced regulation of AFC. In the present study, exposure to alcohol reduced AFC, exacerbated pulmonary edema and worsened LPS­induced lung injury. Alcohol caused a decrease in cyclic adenosine monophosphate (cAMP) levels and inhibited α­ENaC, ß­ENaC and γ­ENaC expression levels in the lung tissue of mice and ATII cells. Furthermore, alcohol decreased α­ENaC, ß­ENaC and γ­ENaC expression levels via the A2aAR or A2bAR­cAMP signaling pathways in vitro. In conclusion, the results of the present study demonstrated that chronic alcohol consumption worsened lung injury by aggravating pulmonary edema and impairing AFC. An alcohol­induced decrease of α­ENaC, ß­ENaC and γ­ENaC expression levels by the A2AR­mediated cAMP pathway may be responsible for the exacerbated effects of chronic alcohol consumption in lung injury.


Subject(s)
Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Epithelial Sodium Channels/drug effects , Epithelial Sodium Channels/metabolism , Ethanol/pharmacology , Receptors, Adenosine A2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Alveolar Epithelial Cells/pathology , Animals , Cyclic AMP/metabolism , Cytokines , Lipopolysaccharides/adverse effects , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/metabolism , Pulmonary Edema/chemically induced , Pulmonary Edema/metabolism , Pulmonary Edema/pathology , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Rats , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Signal Transduction
3.
J Immunol Res ; 2020: 8632048, 2020.
Article in English | MEDLINE | ID: covidwho-961172

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) causes pulmonary and cardiovascular disorders and has become a worldwide emergency. Myocardial injury can be caused by direct or indirect damage, particularly mediated by a cytokine storm, a disordered immune response that can cause myocarditis, abnormal coagulation, arrhythmia, acute coronary syndrome, and myocardial infarction. The present review focuses on the mechanisms of this viral infection, cardiac biomarkers, consequences, and the possible therapeutic role of purinergic and adenosinergic signalling systems. In particular, we focus on the interaction of the extracellular nucleotide adenosine triphosphate (ATP) with its receptors P2X1, P2X4, P2X7, P2Y1, and P2Y2 and of adenosine (Ado) with A2A and A3 receptors, as well as their roles in host immune responses. We suggest that receptors of purinergic signalling could be ideal candidates for pharmacological targeting to protect against myocardial injury caused by a cytokine storm in COVID-19, in order to reduce systemic inflammatory damage to cells and tissues, preventing the progression of the disease by modulating the immune response and improving patient quality of life.


Subject(s)
Adenosine Triphosphate/metabolism , COVID-19/immunology , Cardiovascular Diseases/virology , Receptors, Purinergic/metabolism , SARS-CoV-2 , Adenosine A2 Receptor Agonists/pharmacology , COVID-19/metabolism , Cardiovascular Diseases/immunology , Cardiovascular Diseases/physiopathology , Cytokines/metabolism , Humans , Myocardial Ischemia/immunology , Myocardial Ischemia/physiopathology , Myocardial Ischemia/virology , Pandemics , Purinergic Antagonists/pharmacology , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A3/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , COVID-19 Drug Treatment
4.
Med Hypotheses ; 143: 110051, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-624899

ABSTRACT

Counterproductive lung inflammation and dysregulated thrombosis contribute importantly to the lethality of advanced COVID-19. Adenosine A2A receptors (A2AR), expressed by a wide range of immune cells, as well as endothelial cells and platelets, exert cAMP-mediated anti-inflammatory and anti-thrombotic effects that potentially could be highly protective in this regard. The venerable drug pentoxifylline (PTX) exerts both anti-inflammatory and antithrombotic effects that reflect its ability to boost the responsiveness of A2AR to extracellular adenosine. The platelet-stabilizing drug dipyridamole (DIP) blocks intracellular uptake of extracellularly-generated adenosine, thereby up-regulating A2AR signaling in a way that should be functionally complementary to the impact of PTX in that regard. Moreover, DIP has recently been reported to slow the cellular replication of SARS-CoV-2 in clinically feasible concentrations. Both PTX and DIP are reasonably safe, well-tolerated, widely available, and inexpensive drugs. When COVID-19 patients can be treated within several days of symptom onset, using PTX + DIP in conjunction with hydroxychloroquine (HCQ) and an antibiotic - azithromycin (AZM) or doxycycline - might be warranted. HCQ and AZM can suppress SARS-CoV-2 proliferation in vitro and may slow the cell-to-cell spread of the virus; a large case series evaluating this combination in early-stage patients reported an impressively low mortality rate. However, whereas HCQ and AZM can promote QT interval lengthening and may be contraindicated in more advanced COVID-19 entailing cardiac damage, doxycycline has no such effect and exerts a potentially beneficial anti-inflammatory action. In contrast to HCQ, we propose that the combination of PTX + DIP can be used in both early and advanced stages of COVID-19. Concurrent use of certain nutraceuticals - yeast beta-glucan, zinc, vitamin D, spirulina, phase 2 inducers, N-acetylcysteine, glucosamine, quercetin, and magnesium - might also improve therapeutic outcomes in COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Dipyridamole/therapeutic use , Pandemics , Pentoxifylline/therapeutic use , Pneumonia, Viral/drug therapy , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Agonists/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/metabolism , Dietary Supplements , Fibrinolytic Agents/therapeutic use , Humans , Models, Biological , Pneumonia/etiology , Pneumonia/prevention & control , Pneumonia, Viral/complications , Pneumonia, Viral/metabolism , SARS-CoV-2 , Signal Transduction/drug effects , Thrombosis/etiology , Thrombosis/prevention & control , Translational Research, Biomedical , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL